If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+10x-10=0
a = 4.9; b = 10; c = -10;
Δ = b2-4ac
Δ = 102-4·4.9·(-10)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{74}}{2*4.9}=\frac{-10-2\sqrt{74}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{74}}{2*4.9}=\frac{-10+2\sqrt{74}}{9.8} $
| 5x(3-2)-45=74 | | z/4=z/12+6/3 | | 95+x75=96 | | m÷5-7=12 | | 8x(x-1)^1/2+6(x-1)^3/2=0 | | 4^(2x-x^2)=4^(-8) | | 71x29=x | | -4(-5+5p)+4(6p-6)=-28 | | d2–54=0 | | w(w+1)=30 | | h2+47=47 | | t2=-54 | | -3(x+8)=-2(x-1) | | 4.9x^+10x-10=0 | | -8(1+6a)-3(6a+3)=-17 | | 60/5*(7-5)=x | | 5/6y=-25/48 | | n2–55=0 | | 2/x+5=0 | | X+14+3x=90 | | 60/5(7-5)=x | | k2–15=50 | | 4k^2-80=0 | | 56/81=8/9i | | X²+13=4x | | 2x^2-31x+42=0 | | 0=-4.9t2+10t-10 | | 2/3w-4=5/3w | | 34.55=7g+3.89 | | (6x)+(x+6)=90 | | 2t+1=135 | | 21=-5(6+8b)+7(b-6) |